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PREFACE

This report is a major output of a program in spatial properties of low-frequency acoustic fields in
the deep ocean. This project was instituted at the Naval Research Laboratory in 1974 to provide a
priori estimates of the capabilities and limitations of large arrays which are due to coherence degrada-
tions from environmental causes. The research has emphasized stochastic measures of irregularities in
the ocean. This approach has been followed to provide probabilistic predictions of the environmental
limits to aperture designs.

We have dealt with the contributing elements in the following order: volume effects, bottom
effects, and surface effects. The latter two categories are currently under development, while the first
category is dealt with in part in this report and is essentially closed at the present time. The ordering of
the mechanisms and their influence has been guided by the logical separability of volume effects from
those that relate to the bottom and/or the surface. The volume effects treated in this program provide
the outside practical limit on resolution, and hence size, of low-frequency arrays that our present
knowledge of the internal structure of the deep ocean will permit. In other words, the resolution limit
caused by the forward scattering of the acoustic waves by internal inhomogeneities in the deep ocean
can be estimated with the computer models developed by this program. The model provided in this
report calculates the vertical coherence limitation resulting from random volume scattering. A horizon-
tal coherence model and a more complex vertical coherence model, based on a more complete theory,
have also been developed. These models are the subjects of Refs. 1 and 2.

Specifically, this report provides the background, theoretical basis, algorithm, and operational
information for a FORTRAN computer program called COVERT. This program estimates the effect of
stochastic volume scattering on the vertical spatial coherence of an acoustic signal along a single path.
The propagation path (determined by the mean sound-speed field) is part of the program input and is
termed a macroray path. The scattering employed is appropriate for internal waves; i.e., it is character-
ized by a high degree of anisotropy, is depth dependent, and is described by a fluctuations spectrum
that is characteristic of internal waves. Our report summarizes the theoretical formulations on which
the program is based, the numerical algorithms used, the input data required, and the outputs that are
calculated. An historical summary of propagation in random media is contained in Appendix A.
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VERTICAL COHERENCE ALONG A MACRORAY PATH
IN AN INHOMOGENEOUS ANISOTROPIC OCEAN

INTRODUCTION

Random environmental variations reduce the spatial coherence of an acoustic signal and thereby
cause a degradation in the performance of aperture systems. This environmental loss of coherence for
totally refracted paths results from stochastic volume scattering, the cause of which can be traced to
temperature fluctuations. For the range of experimental parameters of interest, these fluctuations can
be regarded as a direct result of internal waves. The acoustic modeling task is to relate the spatial
coherence of the received signal to the three-dimensional spectrum of temperature fluctuations which is
characteristic of internal waves. )

As a consequence of the high degree of anisotropy of the ocean environment, the coherence
length of an acoustic signal along a horizontal line transverse to the propagation direction wiil be much
greater than along a vertical line. The coherence along a line which lies between vertical and horizontal
will be between these two extremes. For frequencies below about 200 Hz, the anisotropy is such that it
cannot be readily accomodated in a single coherence-loss model for a line of arbitrary tilt by simply
changing a parameter. The very structure of the model will change depending on the direction of the
line along which the coherence is to be estimated. The nature of the anisotropy and the presence of a
background sound-speed channel greatly complicate the task of estimating signal coherence along a
vertical line in comparison to the task of estimating horizontal coherence.

Considering these differences in the underlying physics, we have developed separate spatial
coherence-estimating models for horizontally and vertically directed lines. FORTRAN programs based
on these models have been termed COHORT [1], for a horizontally directed line, and COVERT for a
vertically directed line. A third computer model [2], termed the Combined-Effects Model (CEM), also
provides estimates of signal coherence for a vertically directed line. CEM propagates the mutual coher-
ence function, with scattering, in a range-depth plane, and thus it carries forward an implicit intensity
field smoothed by multiple low-angle forward scattering. Although CEM (based on a more complete
theory [3]1) does not have some of the limitations inherent in COVERT, it does require much more
computation time.

The appropriate use of these models requires that a distinction be made between the irreversible
environmental loss of coherence and the deterministic reduction of coherence along a receiving array.
This deterministic reduction is caused by the combination of acoustic multipaths and nonhorizontal,
nontransverse array geometry. A conventional range-stepping, parabolic-equation algorithm produces
complex acoustic pressures which are then processed to model the beam power output of an array.
Assuming cylindrical symmetry about the source over the sector occupied by the array, we can model
arbitrary array tilts. (The array must generally be straight and transverse to the direction of propaga-
tion.) Array signal gains computed in this manner are generally less than the maximum possible, and
they decrease with increasing tilt. This indicates limited coherence across the array aperture which is
entirely a result of the interfering multipath field. The models discussed above conceptually and practi-
cally separate this deterministic incoherence from that generated by random volume scattering. They
include vertical refraction, but not the effects resulting from interfering multipaths. Thus, the main
purpose of these models is to predict the ultimate limits on array performance imposed by random
environmental fluctuations.

Manuscript approved Nov. 4, 1983.
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This report provides the background, theoretical basis, algorithm, and operational information for
a FORTRAN computer program called COVERT. This program estimates the effect of stochastic
volume scattering on the vertical spatial coherence of an acoustic signal along a single path. The propa-
gation path (determined by the mean sound-speed field) is part of the program input and is termed a
macroray path. The scattering employed is appropriate for internal waves; i.e., it is characterized by a
high degree of anisotropy, is depth dependent, and is described by a fluctuations spectrum that approxi-
mates the Garrett-Munk spectrum [4].

The degradation in performance of line arrays due to stochastic volume scattering is most con-
veniently formulated in terms of the two-point coherence function <I'> of the complex-valued acous-
tic pressure field p(z,r):

<I(zsr)>=<p(z+ (s/2),r)p*(z — (5/2),r)>. (1)

Here the range coordinate is denoted by r, and the two points on the vertical line array are located by
an average depth coordinate z and a separation coordinate s. The asterisk specifies complex conjuga-
tion, and the angular brackets indicate an averaging—an ensemble average in our theoretical model, a
temporal average in practice. Of particular interest is the spatial Fourier transform of <I'>:

<P(20,0> = [ <T(sn> exp (ikeds)ds, @

where k is the averaged signal wave number; i.e., ko = 2w f/cy, where fis the signal frequency and Co
is an average sound speed. For an acoustic field that is statistically homogeneous across the array,
<I'> can be interpreted to give the directional resolution of the averaged intensity.

In the absence of a sound channel and any depth dependence of the scattering mechanism, it is
possible to provide analytic expressions for <I'> in a number of special cases. These expressions pro-
vide useful zeroth order estimates of the loss of signal coherence because of sound-speed fluctuations
caused by the presence of internal waves, provided the frequency of the acoustic signal is high enough
(above several hundred Hz) [5-7] or low enough (in the range of several tens to less than a hundred
Hz) [8-10]. Further, an efficient algorithm exists [3,11] which can span both the gap within which the
analytic expressions cease to be valid, as well as the limiting regions for which the analytic expressions
apply.

The incorporation of a sound channel and the possibility of depth-dependent statistics most cer-
tainly require the introduction of a numerical procedure. Although an appropriate theory is available
[3,12,13] to provide the basis of this program and has been implemented as CEM, this implementation
is very complicated, and its use requires a considerable amount of computation time. Another program
which is based on a Monte Carlo integration of equations (very similar to those on which CEM is
based) is also available [14]. The use of this program also requires considerable computation time.
Further, this last program introduces a description of the scattering process that limits its applicability
by requiring that the acoustic frequency exceed several hundred Hz.

COVERT, which is based on a simplification of the more complete theory on which CEM is
based, limits the degree of coupling between the refraction resulting from an inhomogeneous back-
ground and the random volume scattering and therefore requires considerably less computation time.
This reduction of computation time is bought at the cost of some loss in the expected accuracy of the
predicted coherence estimates, although this loss should be smallest for the higher frequerncy signals for
which CEM requires the greatest amounts of computation time. The two computer models are thus
complementary, with COVERT providing easily obtained first estimates of array performance and CEM
providing refined estimates at lower frequencies and at increased cost in computation time.

The COVERT computer model, as documented in this report, resides on a DEC VAX 11/780
computer at Code 5160, Naval Research Laboratory (NRL). There is also a version on the Texas
Instruments Advanced Scientific Computer (ASC) at NRL which is available to the Navy scientific
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community (for use on the ASC or transfer to another computer) through the Navy Laboratory Com-
puter Network (NALCON).

In the next section we discuss the COVERT program, including its inputs and outputs. The final
section indicates the names of the input variables and their required formats. Appendix A is an histori-
cal summary of the development of propagation in random media. Appendix B outlines the theoretical
basis of COVERT and the algorithm used in its implementation at low frequencies, as determined by
the value of an anisotropy ratio described in the next section. Appendix C outlines a simplification of
the algorithm of Appendix B that is used in COVERT at higher frequencies. Appendix D is a reprint of
Ref. 3 which contains much of the theoretical basis for COVERT. And Appendix E contains a sample
set of input data and the resulting outputs.

PROGRAM DESCRIPTION

We describe the program by discussing the algorithm employed, the significance of the inputs
required, and the outputs produced.

Algorithm

The program algorithm is based on an intuitive argument that the principal effects of the inhomo-
geneous sound-speed profile on the loss of spatial coherence because of stochastic volume scatter are
limited to two factors. One is a change in the orientation of the macroray segments relative to the
highly anisotropic scattering mechanism, and the second is a shift in the vertical position of the seg-
ments relative to the depth-dependent scattering strength. The former factor affects both the rate at
which scattering occurs and the degree to which the scattered signal loses coherence; the latter factor
affects only the rate at which the scattering occurs, i.e., the range required for volume scatter to be
significant. Flatté et al. [7] suggested that the results obtained in the absence of a sound channel and
with depth-independent statistics could be extended by simply replacing the line from source to receiver
by a curved macroray path. Beran et al. [13] discussed the validity of that suggestion within the context
of a more complete radiative transport theory. COVERT, then, is based on a suggestion by Flatté et al.
and further replaces the curved macroray path by a sequence of straight segments. The evolution of
<TI'(z,0,r)> over a single segment is calculated as if there were no sound channel and as if the statis-
tics were homogeneous.

The numerical algorithm for propagating <f‘(z,0,r)> over a single segment depends on the fre-
quency of the signal and on the description of the environment. Accordingly, we define a nondimen-
sional anisotropy ratio o = kol#/ly where I, and Iy are characteristic dimensions of the sound-speed
fluctuations as measured along vertical and horizontal lines. For small values of this ratio, i.e., at low
frequencies, the high anisotropy of the scattering mechanism is of fundamental significance, and this
leads to a complicated numerical algorithm that solves an integrodifferential equation by iteration.
Although we refer to this procedure as the low-frequency algorithm, the limitation is practical rather
than theoretical. We present the theoretical basis for this algorithm in Appendix B. At high enough
frequencies, which correspond to large values of «, the anisotropy of the scattering mechanism is not of
fundamental significance, and a much simpler numerical algorithm, which is algebraic in character, can
be used. The approximation on which this simpler algorithm is based is discussed in Appendix D,
which is a reprint of Ref. 3, and the formulation is summarized in Appendix C.

The value of o« where the program switches from the low-frequency algorithm to the high-
frequency algorithm has been set at 2.0. The results of the high-frequency algorithm are sufficiently
accurate for o > 2.0; they agree with the results of the low-frequency algorithm when a = 2.0 (see
Appendix E). For @ > 2.0, the numerical integration of the low-frequency algorithm may require a
finer grid than the default established in the program. Also, the time for convergence of the iteration
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procedure increases rapidly with frequency. For a < 2.0, the approximation included in the high-
frequency algorithm is less accurate. The low-frequency algorithm is reasonably fast for these lower
frequencies.

COVERT calculates <F(z 6,r)> only at the endpoints of the segments of the macroray path; i.e.,
COVERT calculates <I‘(z,,0 r)> as a function of 9, where z, is the depth of the macroray path at

range r. The values of <F? calculated for the end of one segment are used as the input for the next
segment. The values of <I'(z,6,r)> must be shifted along the @ axis at the transition from one seg-
ment to the next so that the peak is at the angle corresponding to the direction of propagation. This
models a (discontinuous) change in the direction of the signal as it follows the piecewise-linear approxi-
mation of the macroray path.

Although the strength of the scattering mechanism is assumed constant over each segment (and
equal to the value at the midpoint of the segment) it is allowed to vary with the depth of the segment.
The vertical and horizontal correlation lengths, / and /[y (which are required inputs), could be allowed
to vary with depth in a similar manner, but this has not been implemented. Following Desaubies [15],
we estimate that typical values for these lengths at depths near 100 m are 3600 m horizontally and 95 m
vertically. McCoy and Beran [3] used 7000 m and 100 m in investigating the effects of anisotropy, and
these values are used in the sample runs in Appendix E.

To numerically model the source consistent with a plane wave traveling in the direction of the
first segment of the macroray path, COVERT assumes that

<I'(20,6,0)> = I/ 8,) exp [—(6 — 9,)%/02], (3)

where 6, is the angle that the first segment makes with the horizontal and . is a characteristic angular
source width which is set at 0.01° by the program. The description of the source is discussed further in
Appendixes B and C.

Input Data Required

A macroray path from the source to the receiver along which COVERT is to propagate <f> is
input by specifying the endpoints of the sequence of path segments. Such a segmented ray path can be
obtained from a ray-trace program such as TRIMAIN [16]. For a multipath structure, the individual
macroray paths must be treated separately.

The source frequency and two lengths (/y and ;) that characterize correlation distances for the
refractive-index-fluctuations field in the horizontal and vertical directions must be specified.

The strength of the refractive-index fluctuations is described by a nondimensional environmental
parameter 2. Appendix B defines this parameter and shows how it is related to the environmental
parameter E used by the COHORT program [1]. Although COHORT uses a depth-averaged value of E,
the COHORT program can be used to estimate E as a function of depth from whatever environmental
data may be available (such as a temperature profile). A table (profile) that describes E (z) is required

by COVERT, and the program makes the conversion to €2. E has a typical value of 10710

A complete listing of the input data and the required formats are given ih the section entitled
INPUT VARIABLES AND FORMATS.

Outputs Calculated

Two measures of the received signal are calculated and plotted. The Totai Signal is the distribu-
tion of <I'(z,8,R)> as a function of 8 where (zz,R) is the receiver point (the last point on the
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macroray path). The Normalized Scattered Signal <> y is the Total Signal minus a scaled replica of the
initial signal, normalized so that the maximum value is 1.0. The intent is to subtract from the received
signal that portion that can be considered to have undergone no scattering. The scaling for the replica
of the initial signal is determined by the normalized range of the problem which depends on the
strength of the scattering and on: the lengths and angles (with respect to horizontal) of the segments of
the macroray path. A normalized range of 1.0 is defined by the condition that the intensity of the
coherent portion of the signal has been reduced by a factor of 1/e. If the high-frequency (quasi-
isotropic) calculation is used, then <T'(zz,s,R)> is also plotted (as a function of s).

A measure of the coherence of the received signal is given by the curvature of the normalized
scattered signal <I'(zz,0,R)> y at the main arrival angle ,. We define the coherence length by
1 | 1 @<i>, "2
ko|<F>y  d?  |oms,

This length _is part of the program output and is termed the final characteristic length. The angular
width of <T'(zg,8,R)> is also output.

L

4)

INPUT VARIABLES AND FORMATS

The input variables with brief descriptions are listed below. The required input sequence follows
this list.

FREQ The source frequency (Hz)

XLH The horizontal correlation length (m) of the refractive-index field

XLV The vertical correlation length (m) of the refractive-index field

NEPTS The number of points on the profile describing the strength of the refractive-index

fluctuations as a function of depth. (2 £ NEPTS < 51.)
EDEP(I) The Ith depth on the refractive-index fluctuations profile. (/ =1, 2, ..., NEPTS.)

EVAL(I) The strength of the refractive-index fluctuations at depth EDEP(I). (I =1, 2, ...,
NEPTS.)

NSEG1 The number of points describing the macroray path. NSEG1 is equal to the number
of segments on the macroray path plus one. (2 < NSEGI1 < 3001.)

RANGE(I) The range (km) of the Ith point on the segmented macroray path. Thus,
RANGE(1) should be 0.0 and RANGE(NSEG1) is the range of the receiver. (I =
1,2, ..., NSEGL.)

DEPTH() The depth (m) of the macroray path at RANGE(). (/ =1, 2, ..., NSEG1.)

These variables are integers or floating-point numbers according to the usual FORTRAN convention
and are input as card images in the following order with free format:

FREQ, XLH, XLV

NEPTS

EDEP(I), EVAL(I), I = 1, NEPTS (may require several cards)
NSEG1

RANGE(), DEPTH(), I = 1, NSEG1  (may require several cards)

5
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Appendix A

HISTORICAL SUMMARY OF PROPAGATION IN RANDOM MEDIA

1940s AND 1950s

The modern history of research on the scattering of a radiation field by a randomly fluctuating
continuum began during and immediately after World War II. A number of significant studies reported
then by Bergmann [A1l], Mintzer [A2], and Pekeris [A3] were undertaken to explain observations of
the effects of temperature fluctuations in the ocean on a propagating acoustic signal. Since these
fluctuations were weak, and the range of the experiments of interest was limited, the principal method
of analysis was a single-scatter theory, or a Born approximation. Subsequent to these experiments, a
number of conceptually and mathematically similar studies were motivated by observations of the
effects of atmospheric turbulence on a propagating laser-beam signal.

Two monographs, by Chernov [A4] and by Tatarskii [AS5], were translated into English and pub-
lished in 1960 and 1961. These books provided a rather complete survey of the research that had been
carried out in the Soviet Union, and they defined the state of the art at that time. The research dis-
cussed pertained to both acoustic and electromagnetic radiation and emphasized the importance of tur-
bulence as the dynamic process that ultimately gives rise to the scattering. The manuscript by Tatarskii
was particularly noteworthy for its description of the fluctuating medium and for its reliance on the Kol-
mogorov spectrum as a correct description of the scattering mechanism. Both monographs were also
significant for introducing the Rytov approximation of random-scattering problems to Western research-
ers. The Rytov approximation, like the Born approximation, is based on perturbation ideas, but the
claim of both authors was that the approximation correctly accounted for the multiple scattering effects
necessary for the calculations to be valid for long ranges.

1960s

Research into the subject went through a high point in activity and in controversy during the
1960’s with most of the reported studies treating the scattering of electromagnetic signals in the atmo-
sphere. Much of the controversy centered around two questions: What measures of the statistics of the
radiation field are most conveniently determined in physical experiments and most conveniently incor-
porated in theories? How does one derive theories that properly incorporate multiple scatter effects, as
well as the effects of diffraction? A number of studies of the second question were framed in terms of
the relative merits of the Born and Rytov approximations.

By the close of the decade of the 1960’s the controversy on these fundamental questions largely
ceased. The central role of the multipoint statistical moments, termed coherence functions in the prop-
agation literature, was recognized by increasing numbers of researchers. Techniques were developed
for deriving theories, in the form of partial differential equations, governing these statistical moments.
Specific equations were written for the second- and fourth-order moments, the most crucial moments
for discussing experiments. And studies were frequently reported treating the analysis and the solution
of these equations in specific applications. A second monograph by Tatarskii [A6], which appeared in
English in 1971, deemphasized the role of the Rytov approximation highlighted in the earlier work.
The position espoused in this second monograph appeared to be quite similar to that reached by a grow-
ing number of researchers in the United States.
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1970s

Extensions of the Theory—Research in the 1970s addressed the need to solve the governing field
equations on the second- and fourth-order moments. These efforts included obtaining analytic solu-
tions for idealized experiments and developing the general numerical algorithms needed to address real-
istic experiments. Also, special attention was again given to the scattering of acoustic signals in the
ocean. While, in principle, scattering of ocean acoustic signals and scattering of atmospheric elec-
tromagnetic signals are the same, four factors distinguish specific ocean acoustic experiments from
specific atmospheric electromagnetic experiments. First, the specific statistic to be estimated for the
ocean acoustic experiment frequently differs from that of interest in the electromagnetic experiments.
Second, the dynamic process that gives rise to the fluctuating continuum is different in the ocean acous-
tic application [A7]. Third, the wavelengths of the acoustic signals for the experiments of interest are
large (relative to important characteristic lengths) compared to previous applications. And fourth, the
ocean is an inhomogeneous and a highly anisotropic propagation medium [A8,A9,A10]. While the
second and third of these factors make the ocean acoustic experiment different from the previous appli-
cation in degree, the first and fourth can make it different in kind. It is clear that a change in the
specific statistic that is of interest would change the nature of the prediction model. But it is even less
clear (although equally true) that the incorporation of inhomogeneity and anisotropy of the medium
introduces additional length scales that need to be parameterized in additional nondimensional ratios.
Valid prediction modeling usually requires different models for different limiting values of these nondi-
mensional ratios.

As we continue with a synopsis of the advances made in the 1970s, we find that researchers
achieved a general appreciation of the mathematical identity of the scattering of acoustic signals in the
ocean by a randomly inhomogeneous continuum and the quantized motion of a particle in a randomly
perturbed potential field [A11,A12], as well as a duality between a radiative transport theory and the
equation governing the two-point coherence function [A13-A15]. While this appreciation has not
greatly altered the general flow of the development of theories, it has introduced new techniques that
could prove useful in solving specific problems, e.g., the use of Monte Carlo calculations [A16]. Two
additional analytic techniques were introduced into the literature of stochastic volume scattering in the
1970s. One was the use of the formalism of Feynman path integrals [A17]. As applied to calculations
of statistical moments of the acoustic field, path integrals provide an alternate representation of the field
equations discussed above. The advantages of this representation are the natural geometric interpreta-
tion of the processes of refraction and scattering and the global nature of the approximations used to
obtain numerical algorithms. The other technique was the formulation of the scattering problem in
terms of a modal expansion; the scattering mechanism, in this formulation, results in a coupling via
intermodal energy transfer of the normal modes defined for a depth-dependent background medium
[A18-A21]. The motivation for the modal expansion formulation was, clearly, a realization that the
ocean environment does define a waveguide, which becomes more obvious with the decreasing fre-
quencies dictated by changing applications.

Specific Extended-Study Programs— A number of extended-study programs of the random scattering
of acoustic signals by temperature fluctuations were carried out throughout the 1970s. Perhaps the
most exhaustive, and certainly the most extensively reported, were the studies of the JASON group; a
readable summary of much of their effort has been published in book form [A22]. (An updated sum-
mary article is also available [A23].) The JASON studies made four significant contributions.

® Emphasis was placed on the need to relate the acoustic event (the stochastic scattering) to
the oceanographic events (a depth-dependent background sound-speed profile and the
presence of internal waves as the controlling dynamic process).

® Researchers recognized the need to combine important characteristic length scales into
nondimensional parameters which could then be used to classify scattering experiments
according to separate domains of parameter space. Since the JASON-group research
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accepts the validity of a model that is rigorously derived for a medium that is both homo-
geneous and isotropic, only two nondimensional parameters are required to classify all
scattering experiments: one is the ratio of the experimental range to that at which
diffraction effects become significant, and the other is the ratio of the experimental range
to that at which significant acoustic energy (one-half of the original energy) has been scat-
tered.

® The Feyman path formalism already alluded to above was introduced.

° A number of reported experiments were discussed in detail, principally those of
Ellinthorpe et al. [A24] and Ewart [A25].

Although the basic formalism presented by the JASON group can be applied to a broad spectrum of
experiments, it has been applied in detail only to experiments in which the spatial resolution of the sig-
nal was not a principal objective. Almost all of the comparisons considered the statistics of a time
series measured at a single point in the acoustic field.

A second extended program of studies was carried out by a less well-defined group, centered pri-
marily either at New York University or around Tappert (for example, see Refs. All-
13,A16,A20,A21). The scope of the program carried out by Tappert et al. was more limited than that
of the JASON group; Tappert was essentially interested in the lower order spatial statistics, or in the
aperture problem that motivated much of the electromagnetic work of the 1950s and 1960s. Further,
this second effort was exclusively either analytical or numerical in nature; no reference was made to any
specific series of experiments. The principal contributions were noted earlier in this synopsis: namely,
elucidation of the relationship between the ocean acoustics problem and that of the quantized motion of
a particle in a perturbed potential field [A11,A12], the use of Monte Carlo calculations [A16], and the
formulation of the scattering problem in terms of a modal expansion [A20,A21].

The third program of studies was carried out by researchers at NRL and by Beran and McCoy
working with NRL. Once again the scope of the study program was limited to estimation of the spatial
coherence across 2 receiving aperture. A series of sea tests provided the core for the program of stud-
ies, and the model development was accomplished with these sea tests in mind. Four contributions
resulted from this study.

®  Researchers demonstrated that the degree of anisotropy of the scattering mechanism, i.e.,
that caused by internal waves, was sufficient to introduce a new nondimensional ratio
(which we discuss in the section entitled Algorithm) to completely parameterize ocean
acoustic experiments [A8-A10]. The scattering models presented in the optical literature
of the 1960s, or by the JASON group in the 1970s, are valid for large values of this aniso-
tropy ratio. This limit is justified either for propagation in an isotropic medium or for the
propagation of high-frequency signals. (For typical experiments, high frequency implies
greater than a few hundred Hz.)

® The NRL group made a number of approximations to develop a closed-form expression
for estimating the loss of spatial coherence along a transverse horizontal line array
[A8,A10,A26]. Also two computer models with different levels of complexity were
developed to estimate coherence along a vertical line array. One of these models is the
subject of this report, while the other is the subject of Ref. 2.

] All available archival data on the loss of spatial coherence along a horizontal line array
were compiled, and comparisons were made to predictions of the closed-form solution dis-
cussed above.
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° A number of sea tests intended to answer specific questions raised by projected naval
applications were carried out. These tests provided further justification of the closed-form
solution and demonstrated its usefulness in analyzing the performance of operational or
proposed aperture systems.

The volume scattering work of NRL, Beran, and McCoy has been assembled and will be published in
book form [A27].
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Appendix B
NUMERICAL ALGORITHM

The theoretical basis for COVERT is outlined in Ref. 3, which is reprinted in Appendix D.
Detailed derivations of the forumlation that forms this basis are presented in the references contained
in that reprint. As discussed in this report the propagation/scattering model (designed for use when
a < 2.0) is formulated in terms of <I'(z6,r)>, which, in the absence of an inhomogeneous back-
ground profile, satisfies

[ I —k A A
0<I>  89<T> _ "2 5,(0)<fzo,)> - [5,6,6)<[ o' N>d0] (B
or 0z 8w ,
where
G10,0) = k¢ f o (uy,uy) exp [ik()[(o —0Duy — % 6% — 0" uy }dquuV (B2)
and ’
50 = [ 5,00,0)a9" (B3)

The function o (uy,uy) describes the correlation function of the randomly varying component of the
wave number, k(r,z). That is

k¥ (rz) = k¢ 1 + u(rz) + Ap(r,2)], (B4)
and

o (ug,uy) = <Au(r + uy, z + uy)Au(r,z)>, (BS)

where u denotes the deterministic or background component of the wave number field and Au denotes
the randomly varying component. For a k(r,z) that results from the presence of an internal wave field
in the deep ocean, an appropriate choice for o is

o (uguy) = € exp (= luyl/ly — lugl/ 1), (B6)

where Iy an [y are characteristic dimensions of the sound-speed fluctuations as measured along vertical
and horizontal lines, and €2 provides a measure of the strength. Note that

2
e2=0(0,0) = <Au?> =4<(Ac/c)?> = 4< 1 dc| o care>, (B7)

¢ 8T

where c is the speed of sound and T is temperature.

€ can be related to the environmental parameter of COHORT [B1] as follows. Using Egs. (31)
and (32) of Ref. B2 with o as in Eq. (B6), it follows that €2 = wA2l;. The parameter E for a
plane-wave source is defined in Ref. B3 as Epy = 1.14%],. (Also see Eq. (38) of Ref. B2.) Thus,
€2 =7 (ly/1l)) Epw/(1.1). The E parameter in COHORT, which we denote by Epr, is defined however
for a point source and Epy = 2.5 Ep;. (See Eqgs. (39) and (40) in Ref. B2) Now,
€2 = 7w (ly/1,)(2.5/1.1) Epy. Using A% = A* <AT?>/<Au*> and Eq. (B7),

Epp = 0.44 421,
= 0.44 A}, <Au*>/<AT?>
= 0.44 A}ly4 <(Ac/c)*>/<AT*>

2
1 8¢

= 21 &
1.76 Afly c 3T >, (B8)
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which is the formula presented in Ref. Bl and used by the COHORT program. COVERT converts the
input Epy values to €2.

An ideal plane-wave source is described by the initial condition
<I(z6,0)> =156 — 9, (B9)

where [ is a measure of the source strength, and 6; directs the source. A more realistic initial condi-
tion, and one required by a numerical solution of Eq. (B1), is given by

<[(26,00> = I/(J76,) exp [ (9 — 0,)%/62], (B10)

where 6. is a characteristic angular source width. For either initial condition, < f‘(z, 6,r)> is indepen-
dent of z, and the second term on the left-hand side of Eq. (B1) vanishes.

An analytic solution of Eq. (B1) with &,(8,8") given by Eqs. (B2) and (B6) is not available for
either of the initial conditions given by Egs. (B9) and (B10). A numerical algorithm has been devised
[B4,BS] based on an iteration or perturbation series. Thus we rewrite Eq. (B1) without the second
term, as

d<r@n> , k- [5y0)<[6,r) — 5,6,8) [ <['6'r)> do']
dr 8w
- _:_7‘; (5y®) - Ty 6)1<[(0.)> - [ (5,6,0) — 3,6,0)1<[©0,1)> d8’),  (BIL)

where 6, is defined by the specification of the initial condition. Setting the right-hand side of Eq. (B11)
equal to zero results in a governing equation for which there is an analytic solution for any & ,(6,86")
and any initial condition. The numerical algorithm, then, solves Eq. (B11) in terms of a perturbation
series about this analytic solution. We write

<r@,rn> = 26 <r,0,r)>, (B12)
e
where <I((8,r)> satisfies
d<fo6,r)> k . x
T+ 22 15400 <Fo0,)> - 4(0,6) [ <Fo®'r)>de] = 0 (B13)

plus the initial condition in Eq. (B10), and <T',(8,r)>,n > 1 satisfies
d<t,0,r)> Kk _ .
——(_17‘— + E a'V(O,-)<I“,,(0,r)>
ko

=~3, {[7,0) —7,0)1<l,_,6,r) > (B14)

—f 50,0 — G19,0)1<I,_,6',1)> de'),

plus homogeneous initial conditions. Equation (B13) is readily solved, and the solution is written

<Fo®,r)> = J(8) + K (8) exp (—p), (B15)
Where §(g) w ZXSENL (B16)
2 CD)
K() = <I'6,00> - J(9), (B17)
and
p = rkoay(6,)/ (8m). (B18)
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p is a normalized range coordinate. Equation (B14) can next be solved for <T .(0,r)> in terms of
<l" ~1(8,r)>. Then, by a sequence of back substitutions we can obtain the followmg expression for
<[, (0 r)> in terms of the funcitons J(9) and K (9),

m=0

<I,0,r)> = TiJ)] [1 — exp (—p) E L

+ TIK(0)] % exp (—p). (B19)

The notation T} indicates an n-fold application of the following nonlocal operation defined on the 6
coordinate:

f@) de'. (B20)
O"V(g,')

F 50,6 — &,6,8,
T,lr)]=|1- fy(g) £(8) +f 5y (6 9—) ay( )]
O'V(o,‘)

Equations (B10), (B12), and (B15)-(B20) completely describe the algorithm for a homogeneous
background medium and a plane wave source. The convergence of the series can be estimated from
consideration of Eqs. (B19) and (B20). For a specified value of p, the terms governing the r depen-
dence of <F (6,r)> fall quite rapidly with increasing n, for n = p. Since p = 1 roughly corresponds
to the limit of the single-scatter theory, we might expect values of p to be around a few tens but hardly
a few hundreds. Also, acting on a function of @ that is sharply peaked around 6 = @, (the case of
interest) by the T, operator produces a much reduced function (see Eq. (B20)). Both these factors
suggest a rapidly converging algorithm which has proven to be true for all trial cases (see the results in
Appendix E).

The values of <f(0,r)> must be shifted along the # axis at the transition from one segment to
the next so that the peak is at the angle corresponding to the direction of propagation. This models a
(discontinuous) change in the direction of the signal as it follows the piecewise-linear approximation of
the macroray path.

At higher frequencies the numerical integration may require a finer grid than the default es-
tablished in the code. Generally, rather than refine the grid, an alternate algorithm is used which is
based on an additional approximation that is suitable at higher frequencies. This algorithm is algebraic
in nature (see Appendix C).
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Appendix C
HIGH-FREQUENCY (QUASI-ISOTROPIC) ALGORITHM

As the source frequency increases, the algorithm described in Appendix B requires an increasingly
finer grid and more iterations. Since COVERT is intended to produce rapid first estimates of coherence
loss, an approximation (suitable at higher frequencies) which we have termed a quasi-isotropic approxi-
mation is available. The code, as implemented, suggests that this approximation be used when
a > 2.0.

The details of the quasi-isotropic approximation are discussed in Ref. 3, which is reprinted in
Appendix D. The approximation results in the following formulation:

_568) | [Re@ ][ L,
5(0,9,-)] RE<o,->HRE<o>”' v

where N is the number of segments, L, is the length of the ith segment, 8, is the angle (measured
from horizontal) of the ith segment,

N
<I'(sr)> = <I'(5,0)> exp [—; 1

Rz (0) = (2koly/2)7Y, (C2)
R:(6))
i — | s )
R0 lcos 6,! + (Iy/1,) |sin 6,], (C3)
7(50)  Iylcos 8l exp [= |sl/(lylcos 6,11 — Iylsin 8,| exp [=|s|/(lysin 6,]]
= = ; (c4)
(0,6, Iylcos 8] — Iylsin 6,]

€2 is discussed in Appendix B, and <I'(s,0)> is a description of the source.

<TI'(s,0)> should be taken as a constant, but to be consistent with the source required by the
low-frequency algorithm, we form <TI'(s,0)> by transforming Eq. (B10).

This coherence function (Eq. (C1)) must be transformed to produce the Total Signal and Normal-
ized Scattered Signal plots discussed in the section entitled Outputs Calculated.
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From J. Acoust. Soc. Am., "Directional Spectral Spreading in Randomly Inhomogeneous Media,"
by John J. McCoy and Mark J. Beran, Copyright®. Used by permission.
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Directional spectral spreading in randomly inhomogeneous
media
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The redirection of the energy flux in an acoustic signal due to random volume scatter can be described
by a radiative transport theory. We consider and compare three such theories, differing one from another
in the form of the beam pattern of the incrementally scattered energy, sometimes referred to as an
effective scattering cross section. Two of the three theories (termed here quasi-isotropic and highly
anisotropic) have already received some attention in the acoustics literature. The third (termed here
exact) contains the other two as limiting approximations. The comparison is both analytical and
numerical; the numerical phase accomplished for an illustrative acoustic experiment carried out in a
canonical environment. The results emphasize the importance of the high anisotropy of the sound-speed

fluctuations caused by internal waves on the redirection of energy flux measured in a vertical plane.

PACS numbers: 43.30.Bp, 43.30.Gv

INTRODUCTION

One of the principal consequences of a stochastic
volume scattering, e.g., that due to internal waves, is
a redirection of the energy flux of an acoustic signal.
Thus, this is the source of an added transmission loss
as energy is scattered out of the sound channel or a de-
crease in transmission loss as energy is scattered into
shadow zones. Further, it results in degradationinper-
formance of an aperture system, as measured by a de-
crease in array gain or in the ability to resolve the
source of the acoustic signal. Finally, it plays a role
in determining the time spreading of an acoustic pulse
that arises from the stochastic scatter mechanism.

A theory for predicting the redirection of the energy
flux in the acoustic signal is formulated in terms of an
averaged directional spectral density. We denote this
field measure by {f(x, 8)}, where the braces indicate a
statistical (or a temporal) averaging. {I'} provides an
estimate of the averaged energy flux through an elemen-
tal aperture, positioned at x, in an elemental cone of
directions, centered about that given by 6. This field
measure is related to the mutual coherence function (a
two-point correlation function) of the acoustic signal as
a Fourier trgnsform pair. We denote the coherence
function by {F(x, s)}, where x is the averaged location
of the point pair and s describes the relative locations.

The central importance of {1:}, or equivalently of {f'},
for discussing propagation experiments has resulted in
numerous studies aimed at developing prediction
models. The reported models are most commonly
formulated in terms of the mutual coherence function;
the directional spectral density function, inthese models,
has the status of a secondary field measure to be deter-
mined by transforming the coherence function. once it
has been determined. In the very recent literature,

2) Consultants of Large Aperture Acoustics Branch, Naval Re-
search Lab, Washington, DC 20375,
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however, propagation models and scattering (both
volume and surface) models formulated directly in
terms of {f‘(x, 6)} have appeared. The authors can
reference a number of studies reported by ourselves'™
and a number reported by Tappert and colleagues®” as
providing a sampling of these models. The studies by
Tappert and colleagues draw quite heavily on the mathe-
matical similarity between the ocean acoustics problem
and quantum mechanical theory. Thus, the notation and
the terminology favored in them are drawn from quan-
tum mechanics. Our studies, on the other hand, are
presented in the context of the physical problem of in-
terest necessitating some, quite trivial, translation if
the studies are to be combined.

In the present paper we consider three stochastic
volume scatter models formulated in terms of {f"(x, 0)}
and discuss their applicability to scattering caused by
internal waves. None of the three models are original
to this paper, although the authors believe their dis-
cussion of the relationships among them is new. Fur-
ther, the results obtained on applying the models to a
typical acoustic experiment envisioned for a realistic
ocean environment have not appeared previously. These
results shed considerable light onthe directional spread-
ing of the energy flux, in the vertical plane, for low-
frequency signals (of the order of 100 Hz or less) when
the scattering is dominated by internal waves. The re-
sults also constitute a reasonable test to apply to the
scattering models.

The first of the scattering models is termed “exact”
in this paper. The meaning of exact refers to a com-
parison of the scattering model so designated with the
other two models; i.e., they are obtained from the
exact model on making additional approximations. In
actuality, the exact model contains several approxima-
tions, the precise significance of which are just coming
to light. The genesis of the exact model lies in some of
the earliest studies of stochastic volume scatter, al-

© 1979 Acoustical Society of America 1468
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though, surprisingly, it first appeared explicitly only
recently,® and there in the context of a quantum mechan-
ical formulation.

The two approximate models are termed “quasi-iso-
tropic” and “highly anisotropic” since the limitation on
their use can be interpreted asa limitation onthe degree
of anisotropy allowed for the scattering mechanism.
As already indicated, each of the approximate models
is equivalent to a model that has appeared previously.
The quasi-isotropic model, in particular, has a fairly
extensive history of use, principally in predicting the
scatter of laser beams by atmospheric turbulence,®?
but more recently in discussing acoustic signals in the
ocean. The highly anisotropic model was derived by us
specifically for low-frequency signals and a highly
anisotropic ocean.’® To date, its utility has been
limited principally to providing estimates of the direc-
tional spreading or the loss of spatial coherence, as
measured in a horizontal plane.!t:12

In Sec. I we present the exact scattering model fol-
lowed, in Sec. II, by a reduction of this model to the
quasi-isotropic and highly anisotropic models. In Sec.
III, we introduce the ocean environment and the illustra-
tive experiment and present the results of our numerical
calculations. In the Appendices more precise mathe-
matical conditions are placed on the reduction of the
exact model to the two approximate models, and on the
validity of the exact model itself.

I. A GENERAL SCATTERING MODEL

The volume scatter model is given by the integro-
differential equation

LG LIS Y

s, 16
- [ 3500,01 {Fx, 01007, ()
where
5.(0,6")= j o(u) exp[iF(8 - 6") +u]du (2)
and
5,(0)= [ 3,067, 0)a0". @)

The field measure {I'(x, 8)} is a directional spectral
density resolving the averaged power flux throughanele-
mental aperture positioned at x into flow directions, de-
noted by 6; a unit normal vector. It is related to the
signal coherence function as a Fourier transform pair.
Further, % is the averaged wavenumber of the narrow-
band signal and o(u) is the correlation function of the
randomly varying component of k(x), i.e., ku(x),

R(x)=F [1+u,(x)+ p,(x)], )
and
o(w) = {u,®)u,x+w)}. (5)

A brace indicates an ensemble average. The derivative
on the left-hand side of Eq. (1) is a substantive deriva-
tive taken with respect to distance measured along the
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ray path passing through the point x in the direction of
6. For ray paths that make shallow grazing angles with
a global principal propagation direction taken to lie
along the z axis, the substantive derivative is equated
to the partial differential operator,

Esaﬁe-vﬁg(vmo)-vg. (6)
Here V, and V, are gradient operators taken with re-
spect to position in a constant range plane z and the
two-dimensional directional vector 8, respectively.
Also, %pu,(x) denotes the deterministic, or back-
ground, component of the spatially varying wavenum-
ber field. The integral on the right-hand side of Eq.

(1) is a directional integral taken over all 8’. The in-
tegral in Eq. (2) is a 3-D integral taken over physical
space.

The form for the differential operator that constitutes
the left-hand side of Eq. (1) is obtained without consider-
ing volume scatter.! It assumes the validity of a para-
bolic wave theory together with an additional approxima-
tion that we have termed “locally quadratic.” The added
approximation is identically satisfied for background
wavenumbers profiles that are described by functions
that are no more complicated than second order. The
principal assumption in adding scattering terms to the
right-hand side is that processes of diffraction, or re-
fraction, and of scattering are gradual enough that one
can neglect any coupling between them over distances
that are determined, principally, by the correlation
lengths of the scattering mechanism. Tappert and
colleagues®” have recognized Eq. (1) to be a special
case of a general formalism that is termed a radiative
transport theory. (We shall discuss in Appendix A how
the locally quadratic assumption may be removed. We
also point out.in Appendix B that with further work the
assumption that refraction effects are not important
within a correlation length can probably be corrected.)

In the absence of random volume scatter, the right-
hand side of Eq. (1) vanishes, the equation is trivially
integrated and the result shows that {I‘(x, 6)} is a con-
stant along ray paths. This theory differs from the or-
dinary geometric theory in that there is a continuum of
ray paths through each point in the present theory and a
finite number of discrete ray paths in the ordinary
theory. Further, the acoustic intensity of the ordinary
theory is replaced here by {l:(x, 6)}. Theordinary theory
is recovered from the present theory as a limit in which
{I'(x, 6)} approaches a Dirac dependence on . Thus,
the ordinary theory can be interpreted as an approxima-
tion in which a continuous directional spectrum is re-
placed by a discrete line spectrum. Since one of the
principal effects of random volume scatter, and the ef-
fect of interest here, is to cause a spreading of the di-
rectional spectrum of acoustic power flux, it is clear
that one cannot use the ordinary geometric theory to de-
scribe the scattering.

The first of thetwo scatteringterms onthe right-hand
side of Eq. (1) gives the rate at whichpower is scattered

~ from the ray path through the point x in the direction 6.

The second term gives the rate at which power is scat-
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tered to this same ray path, i.e., from the remaining
ray paths through the point x, as given by the direc-
tions 6’. The propagation model is energy conservant.
Hence, the sum of power scattered from all ray paths
passing through x equals the sum of power scattered
to all ray paths passing through x.

While the form of the scattering terms can be obtained
by a direct calcilation (see, for example, Ref.5), it is
more instructive to argue their validity in an indirect
fashion. Thus, we consider first a classical problem of
a plane wave incident on a finite scattering volume in an
otherwise homogeneous medium. The calculation (a sin-
gle-scatter calculation) is of the scattered radiation
fields, and the quantity calculated is the averaged inten-
sity at a point in the farfield of the scattering volume.
The details of the calculation are presented in a number
of general treatments (see Ref. 13). The result, which
appears to be due to Obukhov (see Ref. 14), shows that
the directional distribution of the scattered power flux
is related to the correlation function of the randomly
varying refractive index field as a Fourier transform
pair.

Referring to Eq. (1), the second term on the right-
hand side provides the directional redistribution, in 6,
of the power scattered from the incident directions 6'.
For plane-wave incidence {F(x, ")} has a Dirac depen-
dence on 6’. Hence, G.(6,6’) is properly interpreted as
a beam pattern for the scattered power flux. Consistent
with the classical result discussed above, itisclear that
&, must be related to o(u), the refractive index corre-
lation function, as a Fourier transform pair. With this
fact accepted, the first term is a necessity required by
energy conservation. Thus, the only feature of Eq. (1)
that requires any comment beyond that provided by
Obukhov in 1941 is possibly the constant coefficient
%*/1672. To obtain this requires a somewhat more de-
tailed analysis.

With the validity of the general scattering model
established, we can address ourselves to the develop-
ment of other approximate scattering models that can
be obtained from Eq. (1) on making additional assump-
tions. In the next section we consider two such approxi-
mate models and their relationships to the general
model.

il. A QUASI-ISOTROPIC AND A HIGHLY
ANISOTROPIC SCATTERING MODEL

In this section we consider the kernel function of the
scattering integral and introduce two sets of different
approximations that lead to two different reduced scat-
tering models.

First we consider the following interpretation of Eq.
(2). The unit vector
6=(0+0")/]6+0"| (m

gives a direction that is orthogonal to the vector 6 -6'.
This suggests that we write Eq. (2) as

ACKNE

ur

(J' o(up, u;)du,;) explik(8 - 8’) *uy]du,, (8)
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where ug is measured along the 8 direction and u, is
orthogonal to it. Now, if we choose to locate 8,6’ rela-
tive to 6 by planar angles (6,,6,), and (6.,6,), which
we assume to be small enough to replace sinf=tanf=6,
then we can write the following scalar form for Eq. (8):

0,(0,8")= J. I < f o(uy, u,, u;)du,r)

x exp(ik[ (8, - 6.)u, (6, - 6))u, ) du du,, (9)

where u,,u, are measured along lines orthogonal to 8.
We note that the only approximation introduced in writing
Eq. (9), beyond those already contained in the general
model, restricts the scattering angles to be narrow
enough that we can approximate the trigonometric func-
tions as indicated.

Although Eq. (9) gives the appearance of a scattering
integral being a convolution, it is not. That it is not a
convolution is seen with the realization that the reference
direction for measuring the angles (6,,6,), and (6/,6))
depends on the absolute directions defined by 6 and 6.
For isotropic statistics, of course, one can replace,
with no additional assumption, the averaged direction
6 with “any” direction, say 6*. This last direction is
to be taken to be the same for all 8’ in the scattering
integral. Hence, the scattering integral is, in this
case, a convolution.

This same reasoning, which is exact for an isotropic
medium, can be argued to be approximate for a quasi-
isotropic medium. The condition is that the range of
significant 6 and 6’ directions is sufficiently narrow that
one can replace 8 with a 6%, which is independent of 8
and 6’. A mathematical statement of the condition of
validity, then, depends on the angular spectral width of
the signal, the absolute direction of the principal energy
flux, and the degree of anisotropy of the medium. Since
the spectral width of the acoustic signal decreases with
increasing frequency, the approximation termed quasi-
isotropic might also be interpreted as a high-frequency
approximation. In the Appendices the condition for the
validity of the approximation is made more precise by
identifying the required large number.

A scattering model that has received much attention
in the optics literature is expressed in terms of the mutual
coherence function as measured at two points on the same
range plane, z. We denote the coherence function by
{F xL X ,z)} and write (cf. Refs. 13,15)

8{f}- ’—E (V2 =92 )T} - [hylm 2) ~ iyl 2){E}
[0'(0) U x11 _x12 ]{f(xllvxlz!z)} ’ (10)
where
o(x,, —%y,)= % _[”c(x“ — Xy U,)du,, (11)

and V? denotes a two-dimensional Laplacian operator.
To obtain a model expressed in terms of {I'(x, 6)} from
Eq. (11), we first transform to average and difference
coordinates, introduce the locally quadratic approxima-
tion that replaces the difference in p, values with a dif-
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ferential expression, and then Fourier transform the
difference coordinate. The result is exactly that ob-
tained from our quasi-isotropic scattering model if we
(1) restrict all ray paths to make narrow angles with the
horizontal and (2) identify 6* with €., a unit vector inthe
range direction. The first restriction is acceptable in
many optical experiments, since refraction by an inho-
mogeneous background medium is often not a factor;

the identification of 8* with e, represents no addltlonal
approximation since the scattering mechanism of im-
portance is isotropic.

Recently, the quasi-isotropic model has been sug-
gested for ocean acoustic experiments.'® A degree of
anisotropy is allowed in this suggestion, since 6* is
taken to vary with position along a deterministic multi-
path. However, it is important to note that the degree
of anisotropy is limited. (Actually anadditional assump-
tion is made in these last-mentioned studies, which ap-
pears to limit the rate of curvature of the ray paths.
For straight ray paths, Eq. (10) can be solved in closed
form.)

Because of the quasi-isotropic nature of the above dis-
cussed model, it is not applicable for lower frequency
ocean acoustic experiments. The scattering mechanism
in the ocean is highly anisotropic. For this reason, the
present authors suggested a second approximate model,
which might be termed highly anisotropic.!® In effect,
the highly anisotropic medium approximation uses the
formal approximation

0(u)=< I o(u,,,u;)du;>6(u,) s (12)
where u, is measured along the depth direction and u,
lies in a horizontal plane. The condition for the valid
use of Eq. (12) is that the largest correlation length
measured along the depth direction is small compared
to a projected wavelength. A more precise condition
can be written as

RlLE<1, (13)

where [, is the largest vertical correlation length. This
condition is discussed further in the Appendices, where
it is shown that the quasi-isotropic and highly aniso-
tropic approximations represent two limits of a con-
tinuum of anisotropy measures.

With Eq. (12), Eq. (2) becomes

5.(6, o')=f (fo(u,,,u,)duy> expliF(6 - 6) uylu, . (14)

To reduce Eq. (14) to a scalar form, we introduce pla-
nar angles locating 6, 8’ relative to a horizontal refer-
ence direction, which we denote by 5,,. Using (6,, 6,),
(6., 6)) to again denote the planar angles and assuming
them to be small enough to approximate sinf=tan6= 6

and cosf=1-36°, Eq. (14) leads to
G (6, —9 8,,6!)

%7 7y 7y

S (fobonnn

X exp (iE[(e, -6)u, - %(95 - 9;2)u,])duxdu, (15)
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where u,,u, are measured along horizontal lines in the
u, direction and normal to this direction, respectively.

Like the quasi-isotropic model, our highly amsotroplc
model'®was originally expressed interms of {1" (®1,,%15,2 )}
and was restricted to ray paths that make small angles
relative to the horizontal. To obtainthe model expressed
in terms of {I'(x, )}, as presented here, we need, first
to transform to average and difference coordmates and
then to Fourier transform the difference coordinate.
The result is seen to be identical to Eq. (15).

Two questions relative to the quasi-isotropic and
highly anisotropic models are in order: (1) Why intro-
duce them at all? (2) Can they be justified for a real-
istic ocean acoustic experiment? The answer to the
first is that for some limited experiments one can, by
making still additional assumptions, go much further
toward obtaining simple closed-form expressions for
quantities of experimental interest, if one can justify the
simpler models. For example, the authors were able to
obtain an algebraic expression giving the horizontal co-
herence of a received signal in terms of the signal fre-
quency, the range of the experiment, and a single en-
vironmental parameter.'!'*'*> We obtained the result:

{f(z ,x)}=fu exp[-E(kx )3/ 2(kz)].

Here, z is the range variable and x is the horizontal
separation—both dimensional variables; % is the signal
wavenumber; and E is a single nondimensional environ-
mental parameter. This simple expression has been
used successfully to explain the results of a number of
sea experiments carried out by Moseley and colleagues
at the Naval Research Laboratory (see Ref. 17).

(16)

To answer the second question requires that we com-
pare (numerically) predictions made by the approximate
models with those made by the more general model,
which they approximate. In the next section, then, we
present such comparisons for some experiments of in-
terest.

11l. NUMERICAL COMPARISON OF SCATTERING
MODELS

The scattering models differ from one another in the
predicted rate at which energy is scattered, as mea-
sured by an “extinction” coefficient, and in the beam
pattern of the locally scattered energy, sometimes re-
ferred to as an effective scattering cross section, (This
notation might be somewhat unfortunate, since the func-
tion has been normalized. In radiative transport theory
the nondimensionalized scattering cross section is some-
times referred to as a phase function, but this termi-
nology would probably result in even more confusion.)
Appropriate numerical measures of these parameters
are 5,(6) and 6,(6,6’), respectively. Thus, we consider
sample calculations forthese functions for an illustra-
tive ocean acoustic experiment. We would caution against
applying the numerical results of this section to a real-
istic ocean acoustic experiment. To study the real
ocean, it would be necessary to solve Eq. (1). Our pur-
pose in presenting these numbers is not to reproduce a
realistic experiment; it is to illustrate the differences
between the scattering terms of the three models. Re-
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fraction effects, while being extremely important in
matching data from a realistic sea test, are not at issue
here since all three models can accommodate refrac-
tion.

First, we need describe the fluctuating refractive
index field, which we do by assuming the correlation
function

o= expl (et + L2 ; (1)

I, Ly

1, and I, are characteristic dimensions of the sound-
speed fluctuations as measured along a vertical and a
horizontal line, respectively, and €* depends on the
strength of the fluctuations. This correlation function
gives a one-dimensional refractive index fluctuations
spectrum that falls off, with decreasing size scale, ac-
cording to a minus-two law. [It has this behavior for
size scales that are small when compared to [, (verti-
cal measurements) or [, (horizontal measurements). ]
There would appear to be a quite general agreement
among oceanographers that a minus-two power law is
the best single power law for describing fluctuations

GG(G)IUG(O) = Z2°(0)Z°(8)

0.1 1 1 1L 1 L

on length scales that are of the order of tens of meters
measured along a vertical line and of kilometers mea-
sured along a horizontal line. Experience indicates that
it is the length scales in this range that dominate the
acoustic.experiments of interest, i.e., frequencies of
the order of several tens to a couple of hundred Hertz
and ranges of from some hundred to several thousands of
kilometers. There would be considerably less agree-
ment as to specific numbers for [, and /. The numbers
that we shall use are /,=100 m and /, =7000 m. Al-
though the choices are somewhat arbitrary, the aniso-
tropy ratio of 70:1 falls within the one to two orders of
magnitude that appears to be an accepted rule of thumb.
Further, the 7000 m figure appears to be quite reason-
able to a number of oceanographers; although the 100 m
figure is a bit large. [The figures /,="7000 m and
1,=100 m are argued by the JASON group (see Refs. 18,
19) as being the most representative of the ocean. Our
own reading of oceanographic data would indicate that
the simple exponential with /,=100 m predicts more
energy at the larger length scales than can be justified.
For purposes of illustration, however, we accept their

FIG. 1. Dependence of rate of energy
scatter on grazing angle of incident sig-
nal.

p 2 3 4 5
GRAZING ANGLE (DEGREES)
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values.] The difficulty is undoubtedly caused by an
oversimplification of our description of the phenomenon
mandated by our desire to obtain easily handled, albeit
realistic, analytic forms. Assigning a single number to
€® is even more problematical than for /, and ly. Mea-
sured data would support values that range over several
orders of magnitude, say 107 to 10”7, depending on lo-
cation in the water column. Since the principal effect of
the value of ¢ is to set a scale for measuring range,
however, the specific value is not of great import in our
discussion. Thus, we simply absorb ¢ in G,(6) and
choose the value of 1/6'0(0), where 0 denotes a hori-
zontally directed line, to normalize the range variable.
A range value of unity, then, would correspond to the
range at which some significant percentage, say half,

of the energy in a horizontally directed incident signal
has been scattered. It is to be noted that the normaliza-
tion range is different, as predicted by the three theo-
ries; although, for the cases investigated the values
were all of the same order of magnitude.

In order to specify G4(8)/5,(0) and 5,(6,6')/5,(6’,6")
completely, we need also prescribe the frequency of the
signal. We choose a frequency of 50 Hz since this value
is fairly typical of the values usually discussed in the
context of long-range signal propagation.

For the choice of values used, we find that the para-
meter a=kI2/1,=0.3. In Appendix C we point out that if
a>1, we expect the quasi-isotropic approximation tobe
valid; while if <« 1, we expect the highly anisotropic
model to yield good results. Since @ =0.3 our expecta-
tion is that neither approximation will give very good
results, but that the highly anisotropic approximation
will be the more satisfactory.

In Fig. 1 we illustrate the dependence of the rate at
which energy is scattered on the grazing angle made by
the incident signal and a horizontal line. Since the re-
fractive index fluctuations are azimuthally isotropic,
there is no dependence of energy scatter rate on azi-
muthal direction. Of greatest physical significance is the
very strong dependence of the scattering rate on verti-
cal direction. All other considerations being equal, the
scattering will be strongest in regions in which the ray
paths are horizontal, with a marked decrease in scatter-
ing strength as the grazing angle increases. Of lesser
physical significance, although of interest, are the
shapes of the curves as predicted by the three theories.
Notice that the quasi-isotropic model can incorporate
some degree of anisotropy, but this is only because we
have chosen to introduce the idea of a local principal
propagation direction. In one common derivation of the
quasi-isotropic model,'® the assumption made is inter-
preted as a delta function behavior for the correlation
function with separation distance measured in the range
direction. If the range direction in this statement is in-
terpreted as a global direction, there would be no way
to incorporate the behavior illustrated in Fig. 1 for a
principal ray path that is curved.

Thebeam patterns of the locally scattered energy like-
wise will depend onthe vertical grazing angle. Illustrated
in Fig. 2 are vertical sections of these local beam pat-
terns for incident grazing angles of 0°, 2°, and 5°. The
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FIG. 2. The effective scattering cross section according to
three models (exponential correlation function;? z=7000 m,
1,=100 m, =50 Hz).

quasi-isotropic beam patterns are the easiest to de-
scribe since they are always symmetrically distri-
buted about the incident direction, a concomitant of

the scattering integral being a convolution. Further,
there is very little dependence of the width of the beam
pattern on grazing angle. A good estimate of the width,
as measured by the 3-dB value, is given by (%l,)*. The
highly anisotropic beam patterns are next easiest to
describe. For 0° incidence the beam pattern has much
the same shape as for the quasi-isotropic model, but is
somewhat narrower. An estimate of the width is given
by (kl,)*/2, For other than 0° grazing angle, the highly
anisotropic beam patterns are no longer symmetric
about the incident direction; they are, in fact, always
symmetric about the horizontal line. Further, thebeam
patterns exhibit a two-lobed structure that becomes
more pronounced with increasing grazing angle. Finally,
the width of the individual lobes noticeably decreases
with increasing grazing angle. An estimate of the in-
dividual lobe width is given by (kl,6’)* for 6’> (k1,)™/2,
The marked decrease in the width of the scattering cross
section with increasing grazing angle is of interest
since it suggests the possibility of a saturation of sorts
when discussing the directional spectral spreading as
measured in the vertical plane. Thus, a signal that is
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initially horizontal will spread according to the 0° beam
pattern, a comparatively wide beam pattern. The subse-
quent scatterings of the energy flowing in directions at
the extremities of this 0° beam pattern are governed by
different beam patterns, however, and these new beam
patterns tend to be far more restrictive as far as the
further spreading of the signal is concerned. Thus, the
existence of a saturation is possible. It is noteworthy
that the quasi-isotropic model does not contain this phe-
nomenon.

To understand the “exact” effective scattering cross
sections, it is easiest to interpret the directional re-
distribution of energy flux due to scattering as a filter-
ing process. Then, the exact filter can be interpreted
as two filters applied in sequence. One filter is ac-
curately described by the quasi-isotropic model, and the
second by the highly anisotropic model. This is clearly
demonstrated by the graphical illustrations. The exact
beam patterns exhibit the tendency to a two-lobed struc-
ture with increasing grazing angle. Now, however, the
effect of the quasi-isotropic filter is a tendency to sup-
press one of the lobes, with the degree of suppression
increasing with incident grazing angle. Finally, the
strong dependence of the width of a single lobe on graz-
ing angle, predicted by the strongly anisotropic model,
is also predicted by the exact model. Thus, the possi-
bility of a saturation of sorts exists for this model, too.

There are far less dramatic differences in the hori-
zontal sections of the local beam patterns; hence, we do
not present any illustrative graphs. In each instance the
patterns are symmetric about the incident signal direc-
tion; in shape they are all like the 0° patterns of Fig. 2.

The beam widths of all are of the order of (&,)™, al-
though the coefficient of this parameter depends on the
scattering model and on the incident signal direction as
measured in the vertical plane. The last-mentioned de-
pendency is the cause of a coupling between the vertical
spectral spreading of a signal and the subsequent azi-
muthal spreading.

Figures 1 and 2 illustrates only the behavior of the
model parameters. To illustrate differences in pre-
dicted results for specific acoustic experiments, we
need apply the models to “typical” cases. For the
cases treated the background medium was chosen to
be homogeneous, i.e., p,=0, and the incident signal
was taken to be a plane wave. (Actually we allowed,
for computational purposes, some small, but finite,
directional spectral width of the incident signal.) Again
the frequency was taken to be 50 Hz. The results are
shown in Figs. 3-11. To explain the graphs we first note
that we only considered spreading in the vertical plane,
i.e., that which would be measured by a vertical line
array. Now, the received beam pattern will consist of
two components: the first, a replica of the incident sig-
nal with somewhat lower power content, and the second,
the scattered signal. Since the models are all energy
conservant the sum power of the two components in all
cases remains a constant. There is, however, a mono-
tonic transfer of power content with increasing range
from the unscattered portion of the total signal to the
scattered portion. In addition to increasing in strength,
the width of scattered signal increases with range. Our
primary interest is with the growth in width of the scat-
tered signal. Accordingly, we first subtracted from the
total signal that portion that had not been scattered (i.e.,
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FIG. 7. Directional dependence of the normalized scattered signals according tc one of the models. (Specific model and conditions
of experiment illustrated on figure proper.)
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FIG. 8. Directional dependence of the normalized scattered signals according to one of the models. (Specific model and conditions
of experiment illustrated on figure proper.)
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FIG. 9. Directional dependence of the normalized scattered signals according to one of the models. (Specific model and conditions
of experiment illustrated on figure proper.)
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Exact Model .
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FIG. 10. Directional dependence of the normalized scattered signals according to one of the models. (Specific model and conditions
of experiment illustrated on figure proper.)
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FIG. 11. Directional dependence of the normalized scattered signals according to one of the models. (Specific model and conditions
of experiment illustrated on figure proper.)
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the replica of the incident signal) and subsequently re-
normalized the result to have a maximum value of unity.
The nine graphs consist of the results of the three mo-
dels for three initial grazing angles: 0°,2°,5°, The
ranges are Z=3,1,2,5,10, where the meaning of Z=1
has been discussed. Thus, Z =3 is in the single scatter
region and the scattered beam patterns will be shaped
much like 5,(6,6’), as in Fig. 2. The range Z=10 is
nominally far into the multiple-scatter region and little
energy is expected to be still in the unscattered signal.

The graphs are largely self-explanatory, although
some features warrant some emphasis. First, the
quasi-isotropic model predicts beam widths that quickly
exceed those for which the parabolic theory is valid.
This would indicate a paradox that wouldbe quite difficult
to resolve should this model be accurate. Fortunately,
it is not as is readily seen by comparing the results of
this model with those of the exact model. Also, referring
to the quasi-isotropic model results, we note an apparent
decrease in the rate of spreading of the scattered beam
pattern with increasing grazing angle. This is due en-
tirely to the decrease in scattering rate with increasing
grazing and not to a decrease in the effective scattering
cross section.

The two-lobed structure for the scattered signal pre-
dicted for the highly anisotropic model is clearly visible
for Z<1. Subsequent scatterings, however, tend to fill
out the region about 6=0° as might be expected. The
speculation that the directional spectral spreading in the
vertical plane should tend to a quasi-steady state is not
yet borne out by the graphs for Z<10. The reason for
this is that the vertical spreading does not, in fact,
actually saturate, but tends to a growth rate that is
significantly slower than the initial growth rate.2?2!
This slower growth rate represents a quasi-steady state
on graphs for which the characteristic angular spread
is plotted as a function of propagation distance. Our
manner of presenting results, subtracting out the un-
scattered signal and renormalizing the remainder,
emphasizes, on the other hand, continuing growth. For
Z >10 (Z =20, 30), the growth rate will be slower than at
Z =10.

The results using the exact model are easily inter-
preted in the light of the preceding discussions. The
most noteworthy conclusion to be drawn from these is
that like the highly anisotropic model, the exact model
predicts a loss of signal coherence with separation dis-
tance measured along a vertically positioned line array
that would be much less than a similar prediction that
is based on the quasi-isotropic model.

IV. CONCLUDING REMARKS

In this paper we have considered three random volume
scatter models that might all be classed as radiative
transport theories. The models differ from each other
in the analytic forms chosen for the scattering kernel.
The models were termed exact, quasi-isotropic, and
highly anisotropic, with the latter two being limiting
cases of the first depending on the degree of anisotropy
of the scattering mechanism. Each model can incor-
porate an inhomogeneous background sound-speed pro-
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file, a degree of inhomogeneity in the statistics of the
refractive index fluctuations, and a finite source. To
do so, however, one would most certainly require the
use of efficient numerical codes. It is our belief that
such codes should be based on the exact model, since
using either of the two limiting approximations would
appear to provide little computational advantage.

The approximate models are of interest, however,
since they can lead to analytic solutions in special
situations. These solutions can provide simple alge-
braic expressions useful for obtaining first order esti-
mates of parameters of interest to a systems designer.
As an example, we cited a special case solution based
on the highly anisotropic model that allows one to esti-
mate the loss of coherence as measured along a hori-
zontal line array positioned transverse to the principal
signal direction. Because of this interest in the ap-
proximate scattering theories, it is important to con-
sider their relationship to the more exact model. This
was the purpose of the present paper.
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APPENDIX A: VALIDITY OF EQ. (6)
_In the absence of scattering the coherence function
{I‘(xll, X, z)} obeys the equation
8 i .y ik 2
(&~ 2, -92) - Elun o) - ot ) 1 =0

= - Al
5 (A1)
The only approximation in this equation is that the pres-
sure is governed by the parabolic equation. For simpli-
city we assume that the speed of sound profile varies
only in the transverse direction.

In terms of the sum and difference coordinates
1
X = E(xxl + xxz) ) B=X, =X,

Eq. (Al) becomes

(ot Sl e 0

In order to obtain Eq. (6) the additional approximation

bp(x, +8/2)= ppx=8/2)~8"V, up (A3)

must be made.

The validity of this approximation, which may be
termed a locally quadratic approximation, is discussed
in Ref. 1. We do not yet have enough experience to know
how often the conditions for the validity of Eq. (A3) are
met in practice. It should thus always be kept in mind
that, if necessary, we can consider numerically solving
for {f} using the full difference term given in (A2). In
the absence of scattering, this is clearly feasible when
Kp depends only on the depth direction.

If we do not make the approximation given in (A3) and
wish to consider {T'(x, 8)} rather than {(x, s)} the term
3(V.up) ' V, is replaced by the convolution of {I'} and
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the Fourier transform of the difference pp(x +8/2) -
- p(x —8/2) with respect to s. The final term is

;2,, f1m<ﬁp [2%(6 - 6")] exp[2ik(6 - 6) xL]>

x {T'(x,8")} a0’ , (A4)

where 1, is the Fourier transform of pp.

APPENDIX B: VALIDITY OF THE SCATTERING
TERMS IN EQ. (1)

The scattering terms in Eq. (1) are valid provided that
in the distance Il significant diffraction or refraction
does not occur. If I is of the order of 10 or more
kilometers, this condition is sometimes not satisfied
(particularly with respect to refraction effects) and
Eq. (1) is not valid.

As of the writing of this article, the authors are not
aware of any modifications of Eq. (1) that account for
significant refraction within a distance l,. Itis, how-
ever, possible in principle to include such an effect by
using the method the authors used to derive the integro-
differential equation governing {f‘} in the highly aniso-
tropic case. Here, we should have to solve a difference,
rather than differential, equation in 2z, for the scatter-
ing integral Green’s functions would include refraction
effects. Whether or not the result would be useful would
depend upon how much the scattering integral could be
simplified.

APPENDIX C: DERIVATION OF THE QUASI-
ISOTROPIC AND HIGHLY ANISOTROPIC AP-
PROXIMATIONS FROM THE SCATTERING TERM
IN EQ. (2)

From the expression
5,(6,06)= f o(u) exp[ik(8 - 6’) - uldu, 2)

the quasi-isotropic and highly anisotropic approxima-
tions may be easily found. Since our entire theory is
restricted to small angle scattering about the mean
propagation distance z, we have

el el 16,1, 6 <1.
Therefore,
6,=(1- 62— 62/ 2=1~ 62/2-62/2,

and Eq. (2) becomes

7c(6,0)= [ [ [ ot expiL(6,~ eohe + 6, - 1,

—1(62- 0%, — 5 (62— 6,7 ])du,du,du,. (C1)

Here, terms of order §(E6,) and (E9qu ) are assumed
to be much less than unity. This condition is met for
both limiting cases provided refractive effects are
negligible, since

6,=0(1/kly) (isotropic scattering),
6, = O(1/(Fl,,)”2) (highly anisotropic scattering). (€2)

Here u, is of order [.
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If the refraction angle is large, then these terms may
only be neglected if & is sufficiently small. Of course
we note that if it is possible to follow ray paths (see
Sec. II), the effect of a large refraction angle may per-
haps be overcome.

To obtain the quasi-isotropic model and the isotropic
theory commonly used in the optics literature, we as-
sume

L(ROm,) <1, 3(E6m,)<1. (€3)
This is only possible if
6, << (3Rl )2, (c4)
(We note that 6,, satisfies the necessary condition.)
To obtain the highly anisotropic model we require
3 (RO%u,) <1, Ebu,<1. (C5)

The condition on 6, is satisfied, but the second condition
leads to

6ykl, << 1. (Cs8)

Ignoring refraction for the moment, we see that the
parameter that determines which limit is appropriate is

a=EL/L,).

If @>1, then a quasi-isotropic model is appropriate,
and if @ <«<1, then a highly anisotropic model is appro-
priate. If, for example, /,= 100 m and l4;=7000 m, then
a=1when £=0.7 m™ (167 Hz). The condition required
for the anisotropic model was correctly given in Refs.
10-13. It was incorrectly stated in the survey, Ref. 15.

If refraction angles are significant, Egs. (C4) and (C6)
may be very difficult to satisfy unless it is poss1ble to
follow ray paths.
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Appendix E

SAMPLE RUN

In this appendix we present the input data and computed results from two runs of COVERT, one
run using the general calculation and the other using the high-frequency or quasi-isotropic algorithm.
We chose parameters so that « would be 2.0, which is the established value for changing algorithms.
Both runs were made on the VAX 11/780 at NRL, Code 5160.

For our example we chose a profile characteristic of the Blake plateau region of the Atlantic (Fig.
El). Using TRIMAIN,* we traced the zero-degree ray from a source depth of 1000 m to a range of
100 km. We saved the depth of the ray every 2.0 km, producing the segmented macroray path shown
in Fig. E2. The exact data input to COVERT is shown in Table E1.

The fluctuation-strength profile is also characteristic of the Atlantic and the data input to
COVERT is shown in Table E2.

We chose a source frequency of 334.225 Hz and correlation lengths of /, = 100.0 m, and
Iy =7000.0 m. Then a = kold/ Iy = 2.0, which is the established value for changing to the high-
frequency algorithm. We made two runs, using the the two algorithms.

1000

2000

Depth (m)

3000

4000

6000

K T v 1 T
1480 1500 1620 1640 1660
Sound Speed (m/s)

Fig. E1 — Sound-speed profile, characteristic of the
Blake plateau region of the Atlantic, used to generate
the segmented ray path of Fig. E2

*B.G. Roberts Jr., "Horizontal-Gradient Acoustical Ray-Trace Program TRIMAIN," NRL Report 7827, Dec. 1974.
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Fig. E2 — Segmented macroray path input to COVERT
for the sample runs in Appendix E

Table E1 —Ray-Path Input Data Used
for the COVERT Sample Runs

Range | Depth | Range | Depth | Range | Depth | Range | Depth
| (km) (m) (km) (m) (km) (m) (km) (m)
0.0 1000.0 26.0 1688.0 52.0 1735.0 78.0 | 1009.0
2.0 1032.0 28.0 1578.0 54.0 1806.0 80.0 | 1072.0
4.0 1125.0 | 30.0 1444.0 56.0 1846.0 82.0 | 1191.0
6.0 1260.0 32.0 1296.0 58.0 1857.0 84.0 | 1337.0
8.0 1409.0 34.0 1154.0 60.0 1838.0 86.0 | 1483.0
10.0 1548.0 36.0 1049.0 62.0 1789.0 88.0 | 1611.0
12.0 1664.0 38.0 1002.0 64.0 1711.0 90,0 | 1714.0
14.0 1755.0 40.0 1018.0 66.0 1607.0 92.0 | 1791.0
16.0 1818.0 42.0 1097.0 68.0 1478.0 94.0 | 1839.0
18.0 1852.0 44.0 1225.0 70.0 1332.0 96.0 | 1857.0
20.0 1855.0 46.0 1373.0 72.0 1186.0 98.0 | 1845.0
22.0 1829.0 48.0 1516.0 74.0 1069.0 | 100.0 | 1804.0
24.0 1773.0 50.0 1638.0 76.0 1008.0

Table E2—Fluctuation-Strength Input Data Used
for the COVERT Sample Runs

Depth (m) E Depth (m) E Depth (m) E

0.0 0.218E-10 300.0 0.456E-10 1250.0 0.122E-09
30.0 0.384E-10 400.0 0.407E-10 1500.0 0.534E-10

70.0 0.906E-10 500.0 0.518E-10 1750.0 0.166E-10
100.0 0.123E-09 600.0 0.660E-10 2000.0 0.193E-10
150.0 0.119E-09 700.0 0.789E-10 2500.0 0.721E-11

200.0 0.973E-10 800.0 0.963E-10 3000.0 0.500E-11
250.0 0.605E-10 1000.0 0.138E-09 4000.0 0.500E-11
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Some of the results from these two runs are shown for comparison in Table E3. The Total Signal
plots are shown in Fig. E3, and the Normalized Scattered Signal plots are shown in Fig. E4. As can be
seen from the table and the plots, there are essentially no differences in the computed results.

In the general formulation run, the calculation required 191 iterations for an average of 3.82 itera-
tions for each of the 50 segments of the macroray path. The high-frequency algorithm is obviously
much faster, but the computation time of the low-frequency algorithm is not unreasonable considering
its relative complexity.

Table E3 —Summary of Results from the COVERT Sample Runs

General Formulation | High-Frequency Formulation
Total
normalized 6.60 6.72
range
Final
characteristic 153.2 m 148.5 m
length
Final
characteristic
angular width 1.24° 1.31°
of scattered
signal
Peak of
total signal 0.012 0.011
Total CPU
time required 7455 s
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Fig. E3 — Total signal plots from the sample runs. (a) general
formulation result; (b) quasi-isotropic result.
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Fig. E4 — Normalized scattered signal plots from the sample runs.
(a) general formulation result; (b) quasi-isotropic result.
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